z-logo
open-access-imgOpen Access
Platelet-derived growth factor receptor signaling activates pericyte–myofibroblast transition in obstructive and post-ischemic kidney fibrosis
Author(s) -
YiTing Chen,
Fan-Chi Chang,
Ching-Fang Wu,
YuHsiang Chou,
Huan–Lun Hsu,
WenChih Chiang,
Juqun Shen,
YungMing Chen,
KwanDun Wu,
TunJun Tsai,
Jeremy S. Duffield,
ShueiLiong Lin
Publication year - 2011
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2011.208
Subject(s) - myofibroblast , pericyte , platelet derived growth factor receptor , cancer research , platelet derived growth factor , fibrosis , growth factor receptor , growth factor , microbiology and biotechnology , biology , pathology , signal transduction , medicine , receptor , endothelial stem cell , biochemistry , in vitro
Pericytes are the major source of scar-producing myofibroblasts following kidney injury; however, the mechanisms of this transition are unclear. To clarify this, we examined Collagen 1 (α1)-green fluorescent protein (GFP) reporter mice (pericytes and myofibroblasts express GFP) following ureteral obstruction or ischemia-reperfusion injury and focused on the role of platelet-derived growth factor (PDGF)-receptor (PDGFR) signaling in these two different injury models. Pericyte proliferation was noted after injury with reactivation of α-smooth muscle actin expression, a marker of the myofibroblast phenotype. PDGF expression increased in injured tubules, endothelium, and macrophages after injury, whereas PDGFR subunits α and β were expressed exclusively in interstitial GFP-labeled pericytes and myofibroblasts. When PDGFRα or PDGFRβ activation was inhibited by receptor-specific antibody following injury, proliferation and differentiation of pericytes decreased. The antibodies also blunted the injury-induced transcription of PDGF, transforming growth factor β1, and chemokine CCL2. They also reduced macrophage infiltration and fibrosis. Imatinib, a PDGFR tyrosine kinase inhibitor, attenuated pericyte proliferation and kidney fibrosis in both fibrogenic models. Thus, PDGFR signaling is involved in pericyte activation, proliferation, and differentiation into myofibroblasts during progressive kidney injury. Hence, pericytes may be a novel target to prevent kidney fibrosis by means of PDGFR signaling blockade.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom