z-logo
open-access-imgOpen Access
Peroxisome proliferator-activated receptor-α is renoprotective in doxorubicin-induced glomerular injury
Author(s) -
Yunfeng Zhou,
Xiaomu Kong,
Pan Zhao,
Hang Yang,
Lihong Chen,
Jing Miao,
Xiaoyan Zhang,
Jichun Yang,
Jie Ding,
Youfei Guan
Publication year - 2011
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2011.17
Subject(s) - nephrin , peroxisome proliferator activated receptor , podocyte , endocrinology , medicine , kidney , pharmacology , fenofibrate , acute kidney injury , doxorubicin , knockout mouse , nephrotoxicity , rosiglitazone , podocin , proteinuria , receptor , chemotherapy
Doxorubicin (DOX) is an anthracycline antibiotic utilized in antitumor therapy; however, its clinical use is frequently impeded by renal toxic effects. As peroxisome proliferator-activated receptor-α (PPAR-α) has renoprotective effects in drug-related kidney injuries, we tested its ability to inhibit DOX-induced renal injury. Although both male PPAR-α knockout mice and their wild-type littermates (pure 129/SvJ background) had significant proteinuria 4 weeks after DOX treatment, those with deletion of PPAR-α had more severe proteinuria. This was associated with more serious podocyte foot process effacement compared with wild-type mice. In contrast, the PPAR-α agonist fenofibrate effectively reduced proteinuria and attenuated DOX-induced podocyte foot process effacement. Consistently, glomerular nephrin expression was significantly lower in the knockout compared with wild-type mice following DOX treatment. Fenofibrate therapy significantly blunted the reduction in glomerular nephrin levels in DOX-treated wild-type mice. In cultured podocytes, DOX induced apoptosis, increased cleaved caspase-3 levels, and decreased Bcl-2 expression, all attenuated by pretreatment with fenofibrate. Thus, PPAR-α deficiency exacerbates DOX-related renal injury, in part, due to increased podocyte apoptosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom