z-logo
open-access-imgOpen Access
Bardet–Biedl syndrome highlights the major role of the primary cilium in efficient water reabsorption
Author(s) -
Vincent Marion,
Dominique Schlicht,
Anaïs Mockel,
Sophie Caillard,
O. Imhoff,
Corinne Stoetzel,
Paul van Dijk,
Christian Brandt,
Bruno Moulin,
Hélène Dollfus
Publication year - 2011
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2010.538
Subject(s) - bardet–biedl syndrome , cilium , reabsorption , ciliopathy , medicine , biology , microbiology and biotechnology , genetics , kidney , phenotype , gene
Studies of the primary cilium, now known to be present in all cells, have undergone a revolution, in part, because mutation of many of its proteins causes a large number of diseases, including cystic kidney disease. Bardet-Biedl syndrome (BBS) is an inherited ciliopathy characterized, among other dysfunctions, by renal defects for which the precise role of the cilia in kidney function remains unclear. We studied a cohort of patients with BBS where we found that these patients had a urinary concentration defect even when kidney function was near normal and in the absence of major cyst formation. Subsequent in vitro analysis showed that renal cells in which a BBS gene was knocked down were unciliated, but did not exhibit cell cycle defects. As the vasopressin receptor 2 is located in the primary cilium, we studied BBS-derived unciliated renal epithelial cells and found that they were unable to respond to luminal arginine vasopressin treatment and activate their luminal aquaporin 2. The ability to reabsorb water was restored by treating these unciliated renal epithelial cells with forskolin, a receptor-independent adenylate cyclase activator, showing that the intracellular machinery for water absorption was present but not activated. These findings suggest that the luminal receptor located on the primary cilium may be important for efficient transepithelial water absorption.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom