z-logo
open-access-imgOpen Access
Kidney preservation by bone marrow cell transplantation in hereditary nephropathy
Author(s) -
Brian A. Yeagy,
Frank Harrison,
MarieClaire Gubler,
James A. Koziol,
Daniel R. Salomon,
Stéphanie Cherqui
Publication year - 2011
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2010.537
Subject(s) - kidney , bone marrow , renal stem cell , cystinosis , transplantation , stem cell , medicine , kidney disease , kidney transplantation , acute kidney injury , haematopoiesis , cancer research , pathology , immunology , biology , microbiology and biotechnology , cystine , progenitor cell , biochemistry , cysteine , enzyme
The prospect of cell-based therapy for kidney disease remains controversial despite its immense promise. We had previously shown that transplanting bone marrow and hematopoietic stem cells could generate renal cells and lead to the preservation of kidney function in a mouse model for cystinosis (Ctns(-/-)) that develops chronic kidney injury, 4 months post transplantation. Here, we determined the long-term effects of bone marrow stem cell transplantation on the kidney disease of Ctns(-/-) mice 7 to 15 months post transplantation. Transfer of bone marrow stem cells expressing a functional Ctns gene provided long-term protection to the kidney. Effective therapy, however, depended on achieving a relatively high level of donor-derived blood cell engraftment of Ctns-expressing cells, which was directly linked to the quantity of these cells within the kidney. In contrast, kidney preservation was dependent neither on renal cystine content nor on the age of the mice at the time of transplant. Most of the bone marrow-derived cells within the kidney were interstitial and not epithelial, suggesting that the mechanism involved an indirect protection of the tubules. Thus, our model may help in developing strategies to enhance the potential success of cell-based therapy for kidney injury and in understanding some of the discrepancies currently existing in the field.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom