z-logo
open-access-imgOpen Access
Apoptosis and myostatin mRNA are upregulated in the skeletal muscle of patients with chronic kidney disease
Author(s) -
Daniela Verzola,
Vanessa Procopio,
Antonella Sofia,
Barbara Villaggio,
Alice Tarroni,
Alice Bonanni,
Irene Mannucci,
Franco De Cian,
E Gianetta,
Stefano Saffioti,
Giacomo Garibotto
Publication year - 2011
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2010.494
Subject(s) - myostatin , endocrinology , medicine , skeletal muscle , muscle atrophy , protein kinase b , biology , apoptosis , kidney disease , downregulation and upregulation , gene , biochemistry
Apoptosis and myostatin are major mediators of muscle atrophy and might therefore be involved in the wasting of uremia. To examine whether they are expressed in the skeletal muscle of patients with chronic kidney disease (CKD), we measured muscle apoptosis and myostatin mRNA and their related intracellular signal pathways in rectus abdominis biopsies obtained from 22 consecutive patients with stage 5 CKD scheduled for peritoneal dialysis. Apoptotic loss of myonuclei, determined by anti-single-stranded DNA antibody and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays, was significantly increased three to fivefold, respectively. Additionally, myostatin and interleukin (IL)-6 gene expressions were significantly upregulated, whereas insulin-like growth factor-I mRNA was significantly lower than in controls. Phosphorylated JNK (c-Jun amino-terminal kinase) and its downstream effector, phospho-c-Jun, were significantly upregulated, whereas phospho-Akt was markedly downregulated. Multivariate analysis models showed that phospho-Akt and IL-6 contributed individually and significantly to the prediction of apoptosis and myostatin gene expression, respectively. Thus, our study found activation of multiple pathways that promote muscle atrophy in the skeletal muscle of patients with CKD. These pathways appear to be associated with different intracellular signals, and are likely differently regulated in patients with CKD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom