Genetics and calcium nephrolithiasis
Author(s) -
Giuseppe Vezzoli,
Annalisa Terranegra,
Teresa Arcidiacono,
Laura Soldati
Publication year - 2010
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2010.430
Subject(s) - calcitriol receptor , osteopontin , hypercalciuria , candidate gene , gene , calcium sensing receptor , phenotype , biology , genetics , genome wide association study , vitamin d and neurology , bioinformatics , calcium , endocrinology , medicine , calcium metabolism , single nucleotide polymorphism , genotype , urinary system
Calcium nephrolithiasis is one of the most prevalent uronephrologic disorders in the western countries. Studies in families and twins evidenced a genetic predisposition to calcium nephrolithiasis. Family-based or case-control studies of single-candidate genes evidenced the possible involvement of calcium-sensing receptor (CASR), vitamin D receptor (VDR), and osteopontin (OPN) gene polymorphisms in stone formation. The only high-throughput genome-wide association study identified claudin 14 (CLDN14) gene as a possible major gene of nephrolithiasis. Specific phenotypes were related with these genes: CASR gene in normocitraturic patients, VDR gene in hypocitraturic patients with severe clinical course, and CLDN14 gene in hypercalciuric patients. The pathogenetic weight of these genes remains unclear, but an alteration of their expression may occur in stone formers. Technological skills, accurate clinical examination, and a detailed phenotype description are the basis to get new insight about the genetic basis of nephrolithiasis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom