z-logo
open-access-imgOpen Access
T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles
Author(s) -
Christian Bjørn Poulsen,
Rozh H. AlMashhadi,
Leanne L. Cribbs,
Ole Skøtt,
Pernille Hansen
Publication year - 2010
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2010.429
Subject(s) - efferent , t type calcium channel , afferent arterioles , voltage dependent calcium channel , endocrinology , medicine , vasoconstriction , chemistry , depolarization , mibefradil , calcium , calcium channel , biology , angiotensin ii , afferent , blood pressure
Voltage-gated calcium channels are important for the regulation of renal blood flow and the glomerular filtration rate. Excitation-contraction coupling in afferent arterioles is known to require activation of these channels and we studied their role in the regulation of cortical efferent arteriolar tone. We used microdissected perfused mouse efferent arterioles and found a transient vasoconstriction in response to depolarization with potassium; an effect abolished by removal of extracellular calcium. The T-type voltage-gated calcium channel antagonists mibefradil and nickel blocked this potassium-induced constriction. Further, constriction by the thromboxane analogue U46619 was significantly inhibited by mibefradil at a concentration specific for T-type channels. Using PCR, we found that two channel subtypes, Ca(v)3.1 and Ca(v)3.2, were expressed in microdissected efferent arterioles. Ca(v)3.1 was found by immunocytochemistry to be located in mouse efferent arterioles, human pre- and postglomerular vasculature, and Ca(v)3.2 in rat glomerular arterioles. Inhibition of endothelial nitric oxide synthase by L-NAME or its deletion by gene knockout changed the potassium-elicited transient constriction to a sustained response. Low concentrations of nickel, an agent that blocks Ca(v)3.2, had a similar effect. Thus, T-type voltage-gated calcium channels are functionally important for depolarization-induced vasoconstriction and subsequent dilatation in mouse cortical efferent arterioles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom