z-logo
open-access-imgOpen Access
Amelioration of cisplatin nephrotoxicity by genetic or pharmacologic blockade of prostaglandin synthesis
Author(s) -
Zhanjun Jia,
Ningning Wang,
Toshinori Aoyagi,
Haiping Wang,
Haiying Liu,
Tianxin Yang
Publication year - 2010
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2010.331
Subject(s) - nephrotoxicity , cisplatin , kidney , pharmacology , prostaglandin , medicine , acute kidney injury , oxidative stress , endocrinology , arachidonic acid , chemotherapy , biology , enzyme , biochemistry
Nephrotoxicity is a common complication of cisplatin chemotherapy that limits its clinical use. Here, we determined whether arachidonic acid metabolism has a role in the pathogenesis of cisplatin nephrotoxicity in mice. Three days following cisplatin injection, wild-type mice displayed renal functional and structural abnormalities consistent with nephrotoxicity accompanied by elevated circulating and renal levels of TNF-α and renal levels of IL-1β, subunits of NADPH oxidase, thiobarbituric acid-reactive substances, and PGE(2). These indices of kidney injury, inflammation, oxidative stress, and arachidonate metabolism were all diminished in microsomal prostaglandin E synthase-1 (mPGES-1) null mice; a phenotype recapitulated by treatment of wild-type mice with the COX-2 inhibitor celecoxib. Following cisplatin administration, there was paralleled induction of COX-2 and mPGES-1 in renal parenchymal cells. Interestingly, mPGES-1 null mice were not protected from acute kidney injury caused by ischemia-reperfusion or endotoxin. Hence, our results suggest the activation of COX-2/mPGES-1 pathway in renal parenchymal cells may selectively mediate cisplatin-induced renal injury. This may offer a novel therapeutic target for management of the adverse effect of cisplatin chemotherapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom