Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction
Author(s) -
Thomas T. Tapmeier,
Amy Fearn,
Kathryn Brown,
Paramit Chowdhury,
Steven H. Sacks,
Neil Sheerin,
Wilson W. Wong
Publication year - 2010
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2010.177
Subject(s) - fibrosis , medicine , infiltration (hvac) , kidney , pathology , renal function , cd8 , immune system , immunology , physics , thermodynamics
Tubulointerstitial fibrosis is a common consequence of a diverse range of kidney diseases that lead to end-stage renal failure. The degree of fibrosis is related to leukocyte infiltration. Here, we determined the role of different T cell populations on renal fibrosis in the well-characterized mouse model of unilateral ureteric obstruction. Depletion of CD4(+) T cells in wild-type mice with a monoclonal antibody significantly reduced the amount of interstitial expansion and collagen deposition after 2 weeks of obstruction. Reconstitution of lymphopenic RAG knockout mice with purified CD4(+) but not CD8(+) T cells, prior to ureteric obstruction, resulted in a significant increase in interstitial expansion and collagen deposition. Wild-type mice had significantly greater interstitial expansion and collagen deposition compared with lymphopenic RAG(-/-) mice, following ureteric obstruction; however, macrophage infiltration was equivalent in all groups. Thus, our results suggest that renal injury with subsequent fibrosis is likely to be a multifactorial process, with different arms of the immune system involved at different stages. In this ureteric obstruction model, we found a critical role for CD4(+) T cells in kidney fibrosis. These cells could be a potential target of therapeutic intervention to prevent excessive fibrosis and loss of function due to renal injury.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom