The C3H/HeJ inbred mouse is a model of vesico-ureteric reflux with a susceptibility locus on chromosome 12
Author(s) -
Inga J. Murawski,
Rita W. Maina,
Danielle Malo,
Lisa M. GuayWoodford,
Philippe Gros,
M Fujiwara,
Kenneth Morgan,
Indra R. Gupta
Publication year - 2010
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2010.110
Subject(s) - reflux , ureter , ureteric bud , urinary system , vesicoureteral reflux , urology , locus (genetics) , medicine , biology , genetics , gene , kidney development , disease , embryonic stem cell
Vesico-ureteric reflux is the most common congenital anomaly of the urinary tract, characterized by a defective uretero-vesical junction with retrograde urine flow from the bladder toward the kidneys. Because there is strong evidence for a genetic basis for some cases of vesico-ureteric reflux, we screened 11 inbred mouse strains for reflux and kidney size and identified one strain, C3H/HeJ, that has a 100 percent incidence of vesico-ureteric reflux with otherwise normal kidneys at birth. These mice are predisposed to reflux as a result of a defective uretero-vesical junction characterized by a short intravesical ureter. This defect results from a delay in urinary tract development initially manifested by a ureteric bud arising from a more caudal location along the mesonephric duct. In contrast, C57BL/6J mice (resistant to reflux at birth) have long intravesical ureters, normally positioned ureteric buds, and no delay in urinary tract development. Genome-wide and additional fine mapping of backcross mice, derived from C3H/HeJ and C57BL/6J crosses, identified a significant reflux susceptibility locus, Vurm1, on chromosome 12 (peak logarithm of the odds=7.39). The C3H/HeJ mouse is a model of vesico-ureteric reflux without renal malformation, and further characterization of this model will allow for the identification of a pathway important for urinary tract development, a finding that will serve as a model for the human disorder.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom