Cytochrome-P450 2B1 gene silencing attenuates puromycin aminonucleoside-induced cytotoxicity in glomerular epithelial cells
Author(s) -
Niu Tian,
István Arany,
David J. Waxman,
Radhakrishna Baliga
Publication year - 2010
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2010.100
Subject(s) - cytotoxicity , puromycin , gene silencing , cytochrome p450 , chemistry , microbiology and biotechnology , transfection , gene , pharmacology , biology , biochemistry , protein biosynthesis , in vitro , enzyme
Previously, we demonstrated that cytochrome P450 2B1 (CYP2B1) can generate reactive oxygen species in puromycin aminonucleoside (PAN)-induced nephrotic syndrome, an animal model of minimal-change disease in humans. In this study we found that overexpression of CYP2B1 in rat glomerular epithelial cells in vitro significantly increased PAN-induced reactive oxygen species generation, cytotoxicity, cell death, and collapse of the actin cytoskeleton. All of these pathological changes were markedly attenuated by siRNA-induced CYP2B1 silencing. The cellular CYP2B1 protein content was significantly decreased whereas its mRNA level was markedly increased, suggesting regulation by protein degradation rather than transcriptional inhibition in the PAN-treated glomerular epithelial cells. This degradation of CYP2B1 was accompanied by the induction of heme oxygenase-1, an important indicator of heme-induced oxidative stress. In PAN-treated CYP2B1-silenced glomerular epithelial cells the induction of heme oxygenase-1 and caspase-3 activity were significantly decreased. Further, cleavage of the stress-induced pro-apoptotic endoplasmic reticulum-specific pro-caspase-12 was prevented in the silenced cells. Our results support a pivotal role of CYP2B1 for reactive oxygen species production in the endoplasmic reticulum in PAN-induced cytotoxicity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom