Protein kinase-X interacts with Pin-1 and Polycystin-1 during mouse kidney development
Author(s) -
Xiaohong Li,
Deborah Hyink,
Brian Radbill,
Marius Sudol,
Haojiang Zhang,
Nadezda Zheleznova,
Patricia D. Wilson
Publication year - 2009
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2009.95
Subject(s) - ureteric bud , microbiology and biotechnology , kidney development , biology , gene knockdown , morphogenesis , kidney , kinase , cyclic adenosine monophosphate , protein kinase a , embryonic stem cell , medicine , endocrinology , cell culture , receptor , biochemistry , gene , genetics
The regulation of epithelial branching morphogenesis by bone morphogenetic protein-7 depends, in part, on functionally defined cyclic adenosine monophosphate (cAMP)-dependent protein kinases. We previously identified protein kinase-X (PRKX), a cAMP-dependent kinase, as a regulator of epithelial morphogenesis during kidney development and found that it binds to and phosphorylates Polycystin-1. Overexpression of PRKX stimulates renal epithelial cell migration, tubulogenesis, ureteric bud branching, and glomerular induction in embryonic mouse kidney explants in organ cultures. Here we determined the physiological functions of endogenous PRKX. Knockdown by siRNA of PRKX gene expression in a human fetal collecting tubule (HFCT) cell line exceeded 70% and resulted in decreased cell migration and increased adhesion of the cells to a collagen I matrix. In embryonic mouse kidney explants, the same degree of knockdown decreased ureteric bud branching and glomerular induction. Because PRKX BAG-3 PIN-1 and MAGI-1 are all expressed in ureteric bud derivatives, we tested for interactions among them and found that PRKX binds to all three proteins through its WW domain as determined by TransSignal domain arrays, and it coimmunoprecipitated with Pin-1 in HFCT cell lysates. These studies suggest that Polycystin-1 and Pin-1 may mediate the function of PRKX in kidney development.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom