z-logo
open-access-imgOpen Access
Uroplakins in urothelial biology, function, and disease
Author(s) -
XueRu Wu,
XiangPeng Kong,
Àngel Pellicer,
Gert Kreibich,
TungTien Sun
Publication year - 2009
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2009.73
Subject(s) - urothelium , urothelial cell , renal pelvis , ureter , biology , urethra , urinary bladder , vesicoureteral reflux , urinary system , pathology , microbiology and biotechnology , disease , medicine , urology , anatomy , reflux
Urothelium covers the inner surfaces of the renal pelvis, ureter, bladder, and prostatic urethra. Although morphologically similar, the urothelia in these anatomic locations differ in their embryonic origin and lineages of cellular differentiation, as reflected in their different uroplakin content, expandability during micturition, and susceptibility to chemical carcinogens. Previously thought to be an inert tissue forming a passive barrier between the urine and blood, urothelia have recently been shown to have a secretory activity that actively modifies urine composition. Urothelial cells express a number of ion channels, receptors, and ligands, enabling them to receive and send signals and communicate with adjoining cells and their broader environment. The urothelial surface bears specific receptors that not only allow uropathogenic E. coli to attach to and invade the bladder mucosa, but also provide a route by which the bacteria ascend through the ureters to the kidney to cause pyelonephritis. Genetic ablation of one or more uroplakin genes in mice causes severe retrograde vesicoureteral reflux, hydronephrosis, and renal failure, conditions that mirror certain human congenital diseases. Clearly, abnormalities of the lower urinary tract can impact the upper tract, and vice versa, through the urothelial connection. In this review, we highlight recent advances in the field of urothelial biology by focusing on the uroplakins, a group of urothelium-specific and differentiation-dependent integral membrane proteins. We discuss these proteins' biochemistry, structure, assembly, intracellular trafficking, and their emerging roles in urothelial biology, function, and pathological processes. We also call attention to important areas where greater investigative efforts are warranted.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom