z-logo
open-access-imgOpen Access
Detergent-resistant globotriaosyl ceramide may define verotoxin/glomeruli-restricted hemolytic uremic syndrome pathology
Author(s) -
Fahima Khan,
François Proulx,
Clifford A. Lingwood
Publication year - 2009
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2009.7
Subject(s) - uremic toxins , atypical hemolytic uremic syndrome , renal pathology , ceramide , pathology , globotriaosylceramide , medicine , biology , immunology , kidney , kidney disease , biochemistry , disease , antibody , apoptosis , fabry disease , complement system
Verotoxin binding to its receptor, globotriaosyl ceramide(Gb(3)) mediates the glomerular pathology of hemolytic uremic syndrome, but Gb(3) is expressed in both tubular and glomerular cells. Gb(3) within detergent-resistant membranes, an index of glycolipid-cholesterol enriched lipid rafts, is required for in vitro cytotoxicity. We found that verotoxin 1 and 2 binding to human adult renal glomeruli is detergent resistant, whereas the strong verotoxin binding to renal tubules is detergent sensitive. Verotoxin binding to pediatric glomeruli was detergent resistant but binding to adult glomeruli was enhanced, remarkably for some samples, by detergent extraction. Detergent-sensitive glomerular components may provide age-related protection against verotoxin glomerular binding. Mouse glomeruli remained verotoxin unreactive after detergent extraction, whereas tubular binding was lost. Cholesterol extraction induced strong verotoxin binding in poorly reactive adult glomeruli, suggesting cholesterol can mask Gb(3) in glomerular lipid rafts. Binding of the human immunodeficiency virus (HIV) adhesin, gp120 (another Gb(3) ligand) was detergent sensitive, tubule-restricted, and inhibited by verotoxin B subunit pretreatment, and may relate to HIV nephropathy. Our study shows that differential membrane Gb(3) organization in glomeruli and tubules provides a basis for the age- and glomerular-restricted pathology of hemolytic uremic syndrome.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom