Transactivation of RON receptor tyrosine kinase by interaction with PDGF receptor β during steady-state growth of human mesangial cells
Author(s) -
Takahisa Kobayashi,
Yusuke Furukawa,
Jiro Kikuchi,
Chiharu Ito,
Yukio Miyata,
Shigeaki Muto,
Akira Tanaka,
Eiji Kusano
Publication year - 2009
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2009.44
Subject(s) - platelet derived growth factor receptor , transactivation , tropomyosin receptor kinase c , ror1 , receptor tyrosine kinase , tyrosine kinase , microbiology and biotechnology , chemistry , cancer research , mesangial cell , receptor , medicine , biology , biochemistry , growth factor , in vitro , transcription factor , gene
Although it is well known that platelet-derived growth factor (PDGF) causes mesangial cell proliferation (presumably contributing to progression of glomerular disease), targeted inhibition of the PDGF receptor system has shown only limited efficacy against glomerular diseases. To examine whether this discrepancy is due to the involvement of other pathways, we used phosphorylated receptor tyrosine kinase arrays and found that RON (recepteur d'origine nantais) was phosphorylated while the PDGF receptor was dephosphorylated (thus inactive) in human mesangial cells (HMCs) at the time of cell cycle entry. Further, RON remained active during steady-state growth. Activation of RON was independent of its canonical ligand, macrophage-stimulating protein, but was mediated by transactivation from the PDGF-engaged PDGF receptor. Following stimulation with PDGF we found that the two receptors physically interacted. Knockdown of RON by siRNA increased the number of apoptotic cells without affecting the rate of DNA synthesis, suggesting that RON has anti-apoptotic functions. Immunohistochemical analysis found phosphorylated RON in glomerular lesions of patients with IgA nephropathy but not those with minimal change nephrotic syndrome, a disease not associated with mesangial proliferation. These results suggest that RON is involved in mesangial cell proliferation under both physiological and pathological conditions, and may be a relevant target for therapeutic intervention.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom