z-logo
open-access-imgOpen Access
Mutations of NPHP2 and NPHP3 in infantile nephronophthisis
Author(s) -
Kálmán Tory,
Caroline RoussetRouvière,
MarieClaire Gubler,
Vincent Morinière,
Audrey Pawtowski,
C. Becker,
C. Guyot,
Sophie Gié,
Yaacov Frishberg,
Hubert Nivet,
Georges Deschênes,
Pierre Cochat,
MarieFrance Gagnadoux,
Sophie Saunier,
Corinne Antignac,
Rémi Salomon
Publication year - 2009
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2008.662
Subject(s) - nephronophthisis , medicine , pathology , kidney disease , disease , mutation , phenotype , genetics , biology , gene
Nephronophthisis is an autosomal recessive chronic tubulointerstitial disease that progresses to end-stage renal disease (ESRD) in about 10% of cases during infancy. Mutations in the INVS (NPHP2) gene were found in a few patients with infantile nephronophthisis. Mutations of NPHP3, known to be associated with adolescent nephronophthisis, were found in two patients with early-onset ESRD. Here we screened 43 families with infantile nephronophthisis (ESRD less than 5 years of age) for NPHP2 and NPHP3 mutations and determined genotype-phenotype correlations. In this cohort there were 16 families with NPHP2 mutations and NPHP3 mutations in seven. Three patients carried only one heterozygous mutation in NPHP3. ESRD arose during the first 2 years of life in 16 of 18 patients with mutations in NPHP2, but in only two patients with mutations in NPHP3. Renal morphology, characterized by hyper-echogenic kidneys on ultrasound and tubular lesions with interstitial fibrosis on histology, was similar in the two patient groups. The kidney sizes were highly diverse and ultrasound-visualized cysts were present in a minority of cases. Extra-renal anomalies were found in 80% of the entire cohort including hepatic involvement (50%), cardiac valve or septal defects (20%) and recurrent bronchial infections (18%). We show that NPHP3 mutations in both infantile and adolescent nephronophthisis point to a common pathophysiological mechanism despite their different clinical presentations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom