Accelerated development of collapsing glomerulopathy in mice congenic for the HIVAN1 locus
Author(s) -
Ka-Tak Chan,
Natalia Papeta,
Jeremiah Martino,
Zongyu Zheng,
Rachelle Z. Frankel,
Paul E. Klotman,
Vivette D. D’Agati,
Richard P. Lifton,
Ali G. Gharavi
Publication year - 2008
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2008.625
Subject(s) - congenic , locus (genetics) , glomerulopathy , biology , allele , kidney disease , nephropathy , quantitative trait locus , genetics , chromosome 4 , glomerulonephritis , focal segmental glomerulosclerosis , chromosome 9 , chromosome , immunology , kidney , pathology , gene , endocrinology , medicine , diabetes mellitus
HIV-1 transgenic mice on the FVB/NJ background (TgFVB) are a well validated model of HIV-associated nephropathy (HIVAN). A mapping study between TgFVB and CAST/EiJ (CAST) strains showed this trait to be influenced by a major susceptibility locus on chromosome 3A1-A3 (HIVAN1), with CAST alleles associated with increased risk of disease. We introgressed a 50 Mb interval, encompassing this HIVAN1 locus, from CAST into the TgFVB genome (TgFVB-HIVAN1(CAST) congenic mice). Compared to the TgFVB strain, these congenic mice developed an earlier onset of proteinuria, a rapid progression to kidney failure, and increased mortality. A prospective study of these congenic mice also showed that they had a significantly greater histologic and biochemical evidence of glomerulopathy with one-third of mice developing global glomerulosclerosis by 6 weeks of age. An F2 cross between TgFVB and the congenic mice identified a significant linkage (LOD=3.7) to a 10 cM interval within the HIVAN1 region between D3Mit167 and D3Mit67 resulting in a 60% reduction of the original interval. These data independently confirm that a gene on chromosome 3A1-A3 increases susceptibility to HIVAN, resulting in early onset and rapid progression of kidney disease. These mice represent a new model to study the development and progression of collapsing glomerulopathy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom