COX-2 inhibition attenuates endotoxin-induced downregulation of organic anion transporters in the rat renal cortex
Author(s) -
Klaus Höcherl,
C. G. Schmidt,
Michael Bucher
Publication year - 2008
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2008.557
Subject(s) - downregulation and upregulation , organic anion transporter 1 , renal cortex , transporter , chemistry , cortex (anatomy) , pharmacology , kidney , microbiology and biotechnology , medicine , endocrinology , neuroscience , biology , biochemistry , gene
Renal excretion of organic anions such as para-aminohippurate is reduced during severe sepsis and following ischemia/reperfusion injury. In order to better define the pathophysiology of sepsis-associated renal tubular dysfunction we measured the effect of lipopolysaccharide on renocortical organic anion transporter (OAT) expression in the rat. Prostaglandin E2 (PGE2) downregulates OATs in vitro, therefore, we also evaluated the effect of the cyclooxygenase (COX)-2 inhibitor parecoxib on this process. Endotoxemia caused a time- and dose-dependent decrease of OAT1 and OAT3 expression that paralleled increased renocortical COX-2 expression and PGE2 formation. Pretreatment with parecoxib decreased endotoxin-stimulated PGE(2) formation. Parecoxib attenuated OAT1 and OAT3 gene repression in the rat kidney following endotoxin treatment and during ischemia/reperfusion-induced acute renal injury. COX-2 inhibition improved the creatinine clearance in lipopolysaccharide-treated rats but not after ischemia/reperfusion-induced acute renal injury. The decreased clearance of para-aminohippurate in rats following endotoxin- or ischemia/reperfusion-induced renal injury was improved by parecoxib. Our findings show that COX-2 derived prostanoids downregulate OATs during lipopolysaccharide-induced acute renal injury.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom