z-logo
open-access-imgOpen Access
Propionyl-L-carnitine prevents early graft dysfunction in allogeneic rat kidney transplantation
Author(s) -
Nadia Azzollini,
Daniela Cugini,
Paola Cassis,
Anna Pezzotta,
Elena Gagliardini,
Mauro Abbate,
Arduino Arduini,
Alessandro Peschechera,
Giuseppe Remuzzi,
Marioris
Publication year - 2008
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2008.399
Subject(s) - medicine , transplantation , carnitine , kidney transplantation , transplanted kidney , kidney , graft rejection , urology , surgery
Ischemia-reperfusion injury is an important cause of graft failure. Because carnitine regulates substrate flux and energy balance across membranes which may be deranged in ischemia we determined whether its use was effective in preventing kidney injury in an allogeneic transplant model. Brown Norway rats received a Lewis rat kidney transplant and were then treated with cyclosporine A to avoid rejection. The grafts were stored in Belzer solution supplemented with propionyl-L-carnitine during the cold ischemia period. Compared to rats receiving untreated kidneys but with equal cold ischemia times, the post-transplant serum creatinine values of the carnitine-treated transplants were significantly lower. Histological evaluation 16 h after transplant showed that propionyl-L-carnitine significantly inhibited tubular necrosis and neutrophil infiltration of the allografts and improved the 3 month graft survival. Treated transplants also had decreased lipid peroxidation, inducible nitric oxide synthase expression and protein nitration compared to the untreated grafts. Post-transplant serum creatinine levels were significantly reduced and graft survival was slightly prolonged in rats not receiving cyclosporine A treatment and transplanted with a kidney treated with propionyl-L-carnitine. The efficacy of propionyl-L-carnitine to modulate ischemia-reperfusion injury during transplantation suggests that its use in human transplantation is worth testing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom