Estrogen downregulates the proximal tubule type IIa sodium phosphate cotransporter causing phosphate wasting and hypophosphatemia
Author(s) -
Somia Faroqui,
Moshe Levi,
Manoocher Soleimani,
Hassane Amlal
Publication year - 2008
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2008.33
Subject(s) - endocrinology , medicine , hypophosphatemia , estrogen , ovariectomized rat , downregulation and upregulation , estrogen receptor , chemistry , cotransporter , estrogen receptor alpha , kidney , sodium , biochemistry , organic chemistry , cancer , breast cancer , gene
Estrogen treatment causes significant hypophosphatemia in patients. To determine the mechanisms responsible for this effect, we injected ovariectomized rats with either 17beta-estradiol or vehicle for three days. Significant renal phosphate wasting and hypophosphatemia occurred in estrogen-treated rats despite a decrease in their food intake. The mRNA and protein levels of the renal proximal tubule sodium phosphate cotransporter (NaPi-IIa) were significantly decreased in estradiol-treated ad-libitum or pair-fed groups. Estrogen did not affect NaPi-III or NaPi-IIc expression. In ovariectomized and parathyroidectomized rats, 17beta-estradiol caused a significant decrease in NaPi-IIa mRNA and protein expression compared to vehicle. Estrogen receptor alpha isoform blocker significantly blunted the anorexic effect of 17beta-estradiol but did not affect the downregulation of NaPi-IIa. Our studies show that renal phosphate wasting and hypophosphatemia induced by estrogen are secondary to downregulation of NaPi-IIa in the proximal tubule. These effects are independent of food intake or parathyroid hormone levels and likely not mediated through the activation of estrogen receptor alpha subtype.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom