z-logo
open-access-imgOpen Access
A missense mutation in podocin leads to early and severe renal disease in mice
Author(s) -
Aurélie Philippe,
Stefanie Weber,
Elena Esquivel,
Christophe Houbron,
G. Hamard,
Julien Ratelade,
Wilhelm Kriz,
Franz Schaefer,
MarieClaire Gubler,
Corinne Antignac
Publication year - 2008
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2008.27
Subject(s) - podocin , nephrotic syndrome , podocyte , nephrin , missense mutation , biology , mutant , glomerulonephritis , focal segmental glomerulosclerosis , slit diaphragm , nephrosis , mutant protein , cancer research , mutation , immunology , kidney , genetics , gene , endocrinology , proteinuria
Mutations in the NPHS2 gene, encoding podocin, are responsible for familial autosomal recessive and sporadic cases of steroid-resistant nephrotic syndrome. We have successfully generated a mouse model in which the common p.R138Q mutation found in nephrotic patients is expressed in the kidney. Homozygous mice express the mutant protein, which is mislocated to the cytoplasm, along with a portion of the nephrin pool. These mice die within the first month of life, but their survival depends on the genetic background. Albuminuria manifests early and leads to progressive renal insufficiency, characterized histologically by diffuse mesangiolysis and mesangial sclerosis, endothelial lesions along with podocyte abnormalities such as widespread foot process effacement. Gene expression profiling revealed marked differences between these and the podocin-null mice, including significant perturbations of podocyte-expressed genes such as Cd2ap, Vegfa and the transcription factors Lmx1b and Zhx2. Upregulation of Serpine1 and Tgfb1 implicates these as potential mediators of disease progression in these mice. This mouse model of nephrotic syndrome may serve as a valuable tool in studies of in vivo intracellular protein trafficking of podocyte proteins, as well as testing therapeutic modalities aimed at correcting the targeting of mutant proteins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom