Modulation of melanocortin signaling ameliorates uremic cachexia
Author(s) -
Wai W. Cheung,
Sanna Rosengren,
David L. Boyle,
Robert H. Mak
Publication year - 2008
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2008.150
Subject(s) - melanocortin , cachexia , endocrinology , signal transduction , medicine , biology , microbiology and biotechnology , hormone , cancer
Insulin-like growth factor (IGF)-I increases muscle mass while myostatin inhibits its development. Muscle wasting is common in patients with uremic cachexia and may be due to imbalance of this regulation. We had proposed a central mechanism involving leptin and melanocortin signaling in the pathogenesis of uremic cachexia since agouti-related peptide (AgRP), a melanocortin-4 receptor antagonist, reduced uremic cachexia. Here we found that injection of AgRP into the cerebral ventricles resulted in a gain of body mass and improved metabolic rate regulation in a mouse model of uremic cachexia. These salutary effects occurred independent of increased protein and calorie intake. Myostatin mRNA and protein concentrations were increased while those of IGF-I were decreased in the skeletal muscle of uremic mice. AgRP treatment partially corrected these uremia-induced changes. Suppressor of cytokine signaling-2 gene expression (SOCS2) was significantly increased in uremic animals and AgRP reduced this expression. We suggest that AgRP improves uremic cachexia and muscle wasting by a peripheral mechanism involving the balance between myostatin and IGF-I.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom