Premium
Regulation of mucosal mast cell activation by short interfering RNAs targeting syntaxin4
Author(s) -
Liu Shuang,
Nugroho Agung Endro,
Shudou Masachika,
Maeyama Kazutaka
Publication year - 2012
Publication title -
immunology and cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.999
H-Index - 104
eISSN - 1440-1711
pISSN - 0818-9641
DOI - 10.1038/icb.2011.41
Subject(s) - small interfering rna , gene silencing , microbiology and biotechnology , transfection , mast cell , rna interference , chemistry , inflammation , histamine , immunology , biology , rna , gene , pharmacology , biochemistry
Mucosal mast cells (MMCs) have an important role in allergic inflammation, and effective antagonists are required for their regulation. To discover a possible mechanism of controlling the activation of MMCs, we investigated the expression and function of syntaxin4, one of the soluble membrane N ‐ethylmaleimide‐sensitive factor attachment protein receptor (SNARE) proteins, in RBL‐2H3 cells, which is a rat mucosal mast cell line. Syntaxin4 silencing was induced by transfection of short interfering RNAs (siRNAs). Syntaxin4 was knocked down in mast cells at both the mRNA and protein levels. The release of granule contents that are involved in inflammation, such as histamine and hexosaminidase, was significantly suppressed by the gene silencing of syntaxin4. Silencing of this gene was also induced in the trachea and bronchi of rats by intratracheal application of the siRNAs using an atelocollagen delivery system. The activation of MMCs, which was monitored by the level of rat mast cell protease‐II (RMCPII) in the bronchoalveolar lavage fluid (BALF), was inhibited, and asthmatic airway constriction was prevented by administration of the syntaxin/atelocollagen complex. These results indicate that siRNAs targeting syntaxin4 can stabilize mucosal mast cells and may have beneficial therapeutic effects on the asthmatic response.