z-logo
Premium
Bacterial metabolism, cytokine mRNA transcription and viability of bovine alveolar macrophages infected with Mycobacterium bovis BCG or virulent M bovis
Author(s) -
ALDWELL FE,
WEDLOCK DN,
BUDDLE BM
Publication year - 1996
Publication title -
immunology and cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.999
H-Index - 104
eISSN - 1440-1711
pISSN - 0818-9641
DOI - 10.1038/icb.1996.6
Subject(s) - mycobacterium bovis , virulence , microbiology and biotechnology , biology , mycobacterium tuberculosis , cytokine , pathogenesis , alveolar macrophage , macrophage , tuberculosis , virology , immunology , gene , in vitro , medicine , biochemistry , pathology
Summary Mycobacterium bovis causes tuberculosis in cattle and many other animals including humans while BCG, an attenuated form of M. bovis , has been used widely as a safe vaccine. Both strains infect host macrophages and their fate is determined by their ability to survive within these phagocytic cells. We compared interactions of these two strains with bovine alveolar macrophages in order to gain an understanding of virulence mechanisms involved in the early pathogenesis of M. bovis infection. Macrophages were infected with bacilli at varying multiplicities of infection and cultured for 1‐4 days. Bacterial metabolism within macrophages was assessed by [ 3 H]‐uracil uptake and bacterial growth was assessed by culture and acid‐fast staining. Induction of TNF‐α, IL‐1β and IL‐6 cytokine mRNA transcription in macrophages was determined by reverse transcriptase‐polymerase chain reaction. Infection of macrophages by virulent M. bovis resulted in enhanced bacterial metabolism, enhanced induction of macrophage cytokines and reduced viability of macrophages when compared to M. bovis BCG‐infected macrophages. These differences may reflect virulence mechanisms contributing to the early pathogenesis of bovine tuberculosis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here