z-logo
open-access-imgOpen Access
Ox-LDL suppresses PMA-induced MMP-9 expression and activity through CD36-mediated activation of PPAR-γ
Author(s) -
Kyoung-Jin Lee,
Hyun-A Kim,
Pyeung-Hyeun Kim,
Han Soo Lee,
Kyung-Ran Ma,
Jeong Hyun Park,
Dae Joong Kim,
Jang-Hee Hahn
Publication year - 2004
Publication title -
experimental and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.703
H-Index - 82
eISSN - 2092-6413
pISSN - 1226-3613
DOI - 10.1038/emm.2004.68
Subject(s) - ciglitazone , cd36 , troglitazone , peroxisome proliferator activated receptor , u937 cell , chemistry , activator (genetics) , receptor , matrix metalloproteinase , endocrinology , medicine , biology , apoptosis , biochemistry
During chronic inflammatory response, mono- cytes/macrophages produce 92-kDa matrix metalloproteinase-9 (MMP-9), which may contribute to their extravasation, migration and tissue remodeling. Activation of peroxisome proliferator- activated factor receptor-g (PPAR-g) has been shown to inhibit MMP-9 activity. To evaluate whether ox-LDL, a PPAR-g activator, inhibits PMA-induced MMP-9 expression and activity, and if so, whether CD36 and PPAR-g are involved in this process, we investigated the effect of ox-LDL on MMP-9 expression and activity in PMA-activated human monocytic cell line U937. PMA-induced MMP-9 expression and activity were suppressed by the treatment with ox-LDL (50 mg/ml) or PPAR-g activators such as troglitazone (5 mM), ciglitazone (5 mM), and 15d- PGJ2 (1 mM) for 24 h. This ox-LDL or PPAR-g activator-mediated inhibition of MMP-9 activity was diminished by the pre-treatment of cells with a blocking antibody to CD36, or PGF2a (0.3 mM), which is a PPAR-g inhibitor, as well as overexpression of a dominant-negative form of CD36. Taken together, these results suggest that ox-LDL suppresses PMA-induced MMP-9 expression and activity through CD36-mediated activation of PPAR-g.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom