z-logo
Premium
Listeria phospholipases subvert host autophagic defenses by stalling pre‐autophagosomal structures
Author(s) -
Tattoli Ivan,
Sorbara Matthew T,
Yang Chloe,
Tooze Sharon A,
Philpott Dana J,
Girardin Stephen E
Publication year - 2013
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/emboj.2013.234
Subject(s) - library science , media studies , sociology , computer science
Listeria can escape host autophagy defense pathways through mechanisms that remain poorly understood. We show here that in epithelial cells, Listeriolysin (LLO)‐dependent cytosolic escape of Listeria triggered a transient amino‐acid starvation host response characterized by GCN2 phosphorylation, ATF3 induction and mTOR inhibition, the latter favouring a pro‐autophagic cellular environment. Surprisingly, rapid recovery of mTOR signalling was neither sufficient nor necessary for Listeria avoidance of autophagic targeting. Instead, we observed that Listeria phospholipases PlcA and PlcB reduced autophagic flux and phosphatidylinositol 3‐phosphate (PI3P) levels, causing pre‐autophagosomal structure stalling and preventing efficient targeting of cytosolic bacteria. In co‐infection experiments, wild‐type Listeria protected PlcA/B‐deficient bacteria from autophagy‐mediated clearance. Thus, our results uncover a critical role for Listeria phospholipases C in the inhibition of autophagic flux, favouring bacterial escape from host autophagic defense.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here