Premium
Autolysosomal β‐catenin degradation regulates Wnt‐autophagy‐p62 crosstalk
Author(s) -
Petherick Katy J,
Williams Ann C,
Lane Jon D,
OrdóñezMorán Paloma,
Huelsken Joerg,
Collard Tracey J,
Smartt Helena JM,
Batson Jennifer,
Malik Karim,
Paraskeva Chris,
Greenhough Alexander
Publication year - 2013
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/emboj.2013.123
Subject(s) - biology , library science , wnt signaling pathway , autophagy , colorectal cancer , cancer , apoptosis , genetics , gene , computer science
The Wnt/β‐catenin signalling and autophagy pathways each play important roles during development, adult tissue homeostasis and tumorigenesis. Here we identify the Wnt/β‐catenin signalling pathway as a negative regulator of both basal and stress‐induced autophagy. Manipulation of β‐catenin expression levels in vitro and in vivo revealed that β‐catenin suppresses autophagosome formation and directly represses p62/SQSTM1 (encoding the autophagy adaptor p62) via TCF4. Furthermore, we show that during nutrient deprivation β‐catenin is selectively degraded via the formation of a β‐catenin–LC3 complex, attenuating β‐catenin/TCF‐driven transcription and proliferation to favour adaptation during metabolic stress. Formation of the β‐catenin–LC3 complex is mediated by a W/YXXI/L motif and LC3‐interacting region (LIR) in β‐catenin, which is required for interaction with LC3 and non‐proteasomal degradation of β‐catenin. Thus, Wnt/β‐catenin represses autophagy and p62 expression, while β‐catenin is itself targeted for autophagic clearance in autolysosomes upon autophagy induction. These findings reveal a regulatory feedback mechanism that place β‐catenin at a key cellular integration point coordinating proliferation with autophagy, with implications for targeting these pathways for cancer therapy.