Premium
Auxin reflux between the endodermis and pericycle promotes lateral root initiation
Author(s) -
Marhavý Peter,
Vanstraelen Marleen,
De Rybel Bert,
Zhaojun Ding,
Bennett Malcolm J,
Beeckman Tom,
Benková Eva
Publication year - 2013
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/emboj.2012.303
Subject(s) - biology , endodermis , pericycle , lateral root , auxin , botany , stele , arabidopsis , genetics , gene , mutant
Lateral root (LR) formation is initiated when pericycle cells accumulate auxin, thereby acquiring founder cell (FC) status and triggering asymmetric cell divisions, giving rise to a new primordium. How this auxin maximum in pericycle cells builds up and remains focused is not understood. We report that the endodermis plays an active role in the regulation of auxin accumulation and is instructive for FCs to progress during the LR initiation (LRI) phase. We describe the functional importance of a PIN3 (PIN‐formed) auxin efflux carrier‐dependent hormone reflux pathway between overlaying endodermal and pericycle FCs. Disrupting this reflux pathway causes dramatic defects in the progress of FCs towards the next initiation phase. Our data identify an unexpected regulatory function for the endodermis in LRI as part of the fine‐tuning mechanism that appears to act as a check point in LR organogenesis after FCs are specified.