z-logo
Premium
KDM5B regulates embryonic stem cell self‐renewal and represses cryptic intragenic transcription
Author(s) -
Xie Liangqi,
Pelz Carl,
Wang Wensi,
Bashar Amir,
Varlamova Olga,
Shadle Sean,
Impey Soren
Publication year - 2011
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/emboj.2011.91
Subject(s) - biology , embryonic stem cell , transcription (linguistics) , transcription factor , genetics , stem cell , microbiology and biotechnology , gene , philosophy , linguistics
Although regulation of histone methylation is believed to contribute to embryonic stem cell (ESC) self‐renewal, the mechanisms remain obscure. We show here that the histone H3 trimethyl lysine 4 (H3K4me3) demethylase, KDM5B, is a downstream Nanog target and critical for ESC self‐renewal. Although KDM5B is believed to function as a promoter‐bound repressor, we find that it paradoxically functions as an activator of a gene network associated with self‐renewal. ChIP‐Seq reveals that KDM5B is predominantly targeted to intragenic regions and that it is recruited to H3K36me3 via an interaction with the chromodomain protein MRG15. Depletion of KDM5B or MRG15 increases intragenic H3K4me3, increases cryptic intragenic transcription, and inhibits transcriptional elongation of KDM5B target genes. We propose that KDM5B activates self‐renewal‐associated gene expression by repressing cryptic initiation and maintaining an H3K4me3 gradient important for productive transcriptional elongation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here