Premium
Rsk‐mediated phosphorylation and 14‐3‐3ε binding of Apaf‐1 suppresses cytochrome c ‐induced apoptosis
Author(s) -
Kim Jiyeon,
Parrish Amanda B,
Kurokawa Manabu,
Matsuura Kenkyo,
Freel Christopher D,
Andersen Joshua L,
Johnson Carrie E,
Kornbluth Sally
Publication year - 2012
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/emboj.2011.491
Subject(s) - biology , phosphorylation , apoptosis , apoptosome , cytochrome c , cytochrome , microbiology and biotechnology , biochemistry , caspase , programmed cell death , enzyme
Many pro‐apoptotic signals trigger mitochondrial cytochrome c release, leading to caspase activation and ultimate cellular breakdown. Cell survival pathways, including the mitogen‐activated protein kinase (MAPK) cascade, promote cell viability by impeding mitochondrial cytochrome c release and by inhibiting subsequent caspase activation. Here, we describe a mechanism for the inhibition of cytochrome c ‐induced caspase activation by MAPK signalling, identifying a novel mode of apoptotic regulation exerted through Apaf‐1 phosphorylation by the 90‐kDa ribosomal S6 kinase (Rsk). Recruitment of 14‐3‐3ε to phosphorylated Ser268 impedes the ability of cytochrome c to nucleate apoptosome formation and activate downstream caspases. High endogenous levels of Rsk in PC3 prostate cancer cells or Rsk activation in other cell types promoted 14‐3‐3ε binding to Apaf‐1 and rendered the cells insensitive to cytochrome c , suggesting a potential role for Rsk signalling in apoptotic resistance of prostate cancers and other cancers with elevated Rsk activity. Collectively, these results identify a novel locus of apoptosomal regulation wherein MAPK signalling promotes Rsk‐catalysed Apaf‐1 phosphorylation and consequent binding of 14‐3‐3ε, resulting in decreased cellular responsiveness to cytochrome c .