z-logo
Premium
After half a century mitochondrial calcium in‐ and efflux machineries reveal themselves
Author(s) -
Drago Ilaria,
Pizzo Paola,
Pozzan Tullio
Publication year - 2011
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/emboj.2011.337
Subject(s) - library science , chinese academy of sciences , history , computer science , archaeology , china
Mitochondrial Ca 2+ uptake and release play a fundamental role in the control of different physiological processes, such as cytoplasmic Ca 2+ signalling, ATP production and hormone metabolism, while dysregulation of mitochondrial Ca 2+ handling triggers the cascade of events that lead to cell death. The basic mechanisms of mitochondrial Ca 2+ homeostasis have been firmly established for decades, but the molecular identities of the channels and transporters responsible for Ca 2+ uptake and release have remained mysterious until very recently. Here, we briefly review the main findings that have led to our present understanding of mitochondrial Ca 2+ homeostasis and its integration in cell physiology. We will then discuss the recent work that has unravelled the biochemical identity of three key molecules: NCLX, the mitochondrial Na + /Ca 2+ antiporter, MCU, the pore‐forming subunit of the mitochondrial Ca 2+ uptake channel, and MICU1, one of its regulatory subunits.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom