z-logo
Premium
An MEK‐cofilin signalling module controls migration of human T cells in 3D but not 2D environments
Author(s) -
Klemke Martin,
Kramer Elisabeth,
Konstandin Mathias H,
Wabnitz Guido H,
Samstag Yvonne
Publication year - 2010
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/emboj.2010.153
Subject(s) - biology , signalling , cofilin , microbiology and biotechnology , genetics , cell , cytoskeleton , actin cytoskeleton
T cells infiltrate peripheral tissues to execute immunosurveillance and effector functions. For this purpose, T cells first migrate on the two‐dimensional (2D) surface of endothelial cells to undergo transendothelial migration. Then they change their mode of movement to undergo migration within the three‐dimensional (3D)‐extracellular matrix of the infiltrated tissue. As yet, no molecular mechanisms are known, which control migration exclusively in either 2D or 3D environments. Here, we describe a signalling module that controls T‐cell chemotaxis specifically in 3D environments. In chemotaxing T cells, Ras activity is spatially restricted to the lamellipodium. There, Ras initiates activation of MEK, which in turn inhibits LIM‐kinase 1 activity, thereby allowing dephosphorylation of the F‐actin‐remodelling protein cofilin. Interference with this MEK‐cofilin module by either inhibition of MEK or by knockdown of cofilin reduces speed and directionality of chemotactic migration in 3D‐extracellular matrices, but not on 2D substrates. This MEK‐cofilin module may have an important function in the tissue positioning of T cells during an immune response.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here