z-logo
Premium
Crosstalk between apoptosis and autophagy within the Beclin 1 interactome
Author(s) -
Maiuri Maria Chiara,
Criollo Alfredo,
Kroemer Guido
Publication year - 2010
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/emboj.2009.377
Subject(s) - autophagy , crosstalk , biology , microbiology and biotechnology , interactome , endoplasmic reticulum , kinase , pi3k/akt/mtor pathway , bag3 , phosphatidylinositol , apoptosis , signal transduction , gene , biochemistry , physics , optics
Although the essential genes for autophagy (Atg) have been identified, the molecular mechanisms through which Atg proteins control 'self eating' in mammalian cells remain elusive. Beclin 1 (Bec1), the mammalian orthologue of yeast Atg6, is part of the class III phosphatidylinositol 3-kinase (PI3K) complex that induces autophagy. The first among an increasing number of Bec1-interacting proteins that has been identified is the anti-apoptotic protein Bcl-2. The dissociation of Bec1 from Bcl-2 is essential for its autophagic activity, and Bcl-2 only inhibits autophagy when it is present in the endoplasmic reticulum (ER). A paper in this issue of the EMBO Journal has identified a novel protein, NAF-1 (nutrient-deprivation autophagy factor-1), that binds Bcl-2 at the ER. NAF-1 is a component of the inositol-1,4,5 trisphosphate (IP3) receptor complex, which contributes to the interaction of Bcl-2 with Bec1 and is required for Bcl-2 to functionally antagonize Bec1-mediated autophagy. This work provides mechanistic insights into how autophagy- and apoptosis-regulatory molecules crosstalk at the ER.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here