z-logo
Premium
Coordinated regulation of autophagy by p38α MAPK through mAtg9 and p38IP
Author(s) -
Webber Jemma L,
Tooze Sharon A
Publication year - 2010
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/emboj.2009.321
Subject(s) - biology , autophagy , microbiology and biotechnology , p38 mitogen activated protein kinases , mapk/erk pathway , computational biology , genetics , kinase , apoptosis
Autophagy, a lysosomal degradation pathway, is essential for homeostasis, development, neurological diseases, and cancer. Regulation of autophagy in human disease is not well understood. Atg9 is a transmembrane protein required for autophagy, and it has been proposed that trafficking of Atg9 may regulate autophagy. Mammalian Atg9 traffics between the TGN and endosomes in basal conditions, and newly formed autophagosomes in response to signals inducing autophagy. We identified p38IP as a new mAtg9 interactor and showed that this interaction is regulated by p38α MAPK. p38IP is required for starvation‐induced mAtg9 trafficking and autophagosome formation. Manipulation of p38IP and p38α alters mAtg9 localization, suggesting p38α regulates, through p38IP, the starvation‐induced mAtg9 trafficking to forming autophagosomes. Furthermore, we show that p38α is a negative regulator of both basal autophagy and starvation‐induced autophagy, and suggest that this regulation may be through a direct competition with mAtg9 for binding to p38IP. Our results provide evidence for a link between the MAPK pathway and the control of autophagy through mAtg9 and p38IP.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here