Premium
The structural basis of Arf effector specificity: the crystal structure of ARF6 in a complex with JIP4
Author(s) -
Isabet Tatiana,
Montagnac Guillaume,
Regazzoni Karine,
Raynal Bertrand,
Khadali Fatima El,
England Patrick,
Franco Michel,
Chavrier Philippe,
Houdusse Anne,
Ménétrey Julie
Publication year - 2009
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/emboj.2009.209
Subject(s) - heterotrimeric g protein , chemistry , biophysics , biology , g protein , biochemistry , signal transduction
The JNK‐interacting proteins, JIP3 and JIP4, are specific effectors of the small GTP‐binding protein ARF6. The interaction of ARF6–GTP with the second leucine zipper (LZII) domains of JIP3/JIP4 regulates the binding of JIPs to kinesin‐1 and dynactin. Here, we report the crystal structure of ARF6–GTP bound to the JIP4‐LZII at 1.9 Å resolution. The complex is a heterotetramer with dyad symmetry arranged in an ARF6–(JIP4) 2 –ARF6 configuration. Comparison of the ARF6–JIP4 interface with the equivalent region of ARF1 shows the structural basis of JIP4's specificity for ARF6. Using site‐directed mutagenesis and surface plasmon resonance, we further show that non‐conserved residues at the switch region borders are the key structural determinants of JIP4 specificity. A structure‐derived model of the association of the ARF6–JIP3/JIP4 complex with membranes shows that the JIP4‐LZII coiled‐coil should lie along the membrane to prevent steric hindrances, resulting in only one ARF6 molecule bound. Such a heterotrimeric complex gives insights to better understand the ARF6‐mediated motor switch regulatory function.