Premium
Structural basis for specific recognition of Lys 63‐linked polyubiquitin chains by tandem UIMs of RAP80
Author(s) -
Sato Yusuke,
Yoshikawa Azusa,
Mimura Hisatoshi,
Yamashita Masami,
Yamagata Atsushi,
Fukai Shuya
Publication year - 2009
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/emboj.2009.160
Subject(s) - biology , tandem , basis (linear algebra) , computational biology , genetics , materials science , composite material , geometry , mathematics
RAP80 has a key role in the recruitment of the Abraxas–BRCC36–BRCA1–BARD1 complex to DNA‐damage foci for DNA repair through specific recognition of Lys 63‐linked polyubiquitinated proteins by its tandem ubiquitin‐interacting motifs (UIMs). Here, we report the crystal structure of the RAP80 tandem UIMs (RAP80‐UIM1‐UIM2) in complex with Lys 63‐linked di‐ubiquitin at 2.2 Å resolution. The two UIMs, UIM1 and UIM2, and the α‐helical inter‐UIM region together form a continuous 60 Å‐long α‐helix. UIM1 and UIM2 bind to the proximal and distal ubiquitin moieties, respectively. Both UIM1 and UIM2 of RAP80 recognize an Ile 44‐centered hydrophobic patch on ubiquitin but neither UIM interacts with the Lys 63‐linked isopeptide bond. Our structure suggests that the inter‐UIM region forms a 12 Å‐long α‐helix that ensures that the UIMs are arranged to enable specific binding of Lys 63‐linked di‐ubiquitin. This was confirmed by pull‐down analyses using RAP80‐UIM1‐UIM2 mutants of various length inter‐UIM regions. Further, we show that the Epsin1 tandem UIM, which has an inter‐UIM region similar to that of RAP80‐UIM1‐UIM2, also selectively binds Lys 63‐linked di‐ubiquitin.