z-logo
open-access-imgOpen Access
Drought-induced guard cell signal transduction involves sphingosine-1-phosphate
Author(s) -
Carl K.Y. Ng,
Kathryn Carr,
Martin R. McAinsh,
B. M. Powell,
Alistair M. Hetherington
Publication year - 2001
Publication title -
nature
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.993
H-Index - 1226
eISSN - 1476-4687
pISSN - 0028-0836
DOI - 10.1038/35069092
Subject(s) - guard cell , calcium , turgor pressure , sphingosine 1 phosphate , signal transduction , calcium signaling , microbiology and biotechnology , biophysics , abscisic acid , chemistry , biochemistry , phosphate , biology , sphingosine , receptor , organic chemistry , gene
Stomata form pores on leaf surfaces that regulate the uptake of CO2 for photosynthesis and the loss of water vapour during transpiration. An increase in the cytosolic concentration of free calcium ions ([Ca2+]cyt) is a common intermediate in many of the pathways leading to either opening or closure of the stomatal pore. This observation has prompted investigations into how specificity is controlled in calcium-based signalling systems in plants. One possible explanation is that each stimulus generates a unique increase in [Ca2+]cyt, or 'calcium signature', that dictates the outcome of the final response. It has been suggested that the key to generating a calcium signature, and hence to understanding how specificity is controlled, is the ability to access differentially the cellular machinery controlling calcium influx and release from internal stores. Here we report that sphingosine-1-phosphate is a new calcium-mobilizing molecule in plants. We show that after drought treatment sphingosine-1-phosphate levels increase, and we present evidence that this molecule is involved in the signal-transduction pathway linking the perception of abscisic acid to reductions in guard cell turgor.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom