
Combining convolutional neural networks and cognitive models to predict novel object recognition in humans.
Author(s) -
Jeffrey Annis,
Isabel Gauthier,
Thomas J. Palmeri
Publication year - 2021
Publication title -
journal of experimental psychology. learning, memory, and cognition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.758
H-Index - 156
eISSN - 1939-1285
pISSN - 0278-7393
DOI - 10.1037/xlm0000968
Subject(s) - convolutional neural network , cognition , computer science , artificial intelligence , object (grammar) , cognitive neuroscience of visual object recognition , pattern recognition (psychology) , machine learning , cognitive psychology , neuroscience , psychology
Object representations from convolutional neural network (CNN) models of computer vision (LeCun, Bengio, & Hinton, 2015) were used to drive a cognitive model of decision making, the linear ballistic accumulator (LBA) model (Brown & Heathcote, 2008), to predict errors and response times (RTs) in a novel object recognition task in humans. CNNs have become very successful at visual tasks like classifying objects in real-world images (e.g., He, Zhang, Ren, & Sun, 2015; Krizhevsky, Sutskever, & Hinton, 2012). We asked whether object representations learned by CNNs previously trained on a large corpus of natural images could be used to predict performance recognizing novel objects the network has never been trained on; we used novel Greebles, Ziggerins, and Sheinbugs that have been used in a number of previous object recognition studies. We specifically investigated whether a model combining high-level CNN representations of these novel objects could be used to drive an LBA model of decision making to account for errors and RTs in a same-different matching task (from Richler et al., 2019). Combining linearly transformed CNN object representations with the LBA provided reasonable accounts of performance not only on average, but at the individual-participant level and the item level as well. We frame the findings in the context of growing interest in using CNN models to understand visual object representations and the promise of using CNN representations to extend cognitive models to explain more complex aspects of human behavior. (PsycInfo Database Record (c) 2021 APA, all rights reserved).