A model of dynamic, within-trial conflict resolution for decision making.
Author(s) -
Emily Ruth Weichart,
Brandon M. Turner,
Per B. Sederberg
Publication year - 2020
Publication title -
psychological review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.688
H-Index - 211
eISSN - 1939-1471
pISSN - 0033-295X
DOI - 10.1037/rev0000191
Subject(s) - cognition , psychology , cognitive psychology , bayesian probability , set (abstract data type) , task (project management) , connectionism , control (management) , artificial intelligence , computer science , machine learning , neuroscience , management , economics , programming language
Growing evidence for moment-to-moment fluctuations in visual attention has led to questions about the impetus and time course of cognitive control. These questions are typically investigated with paradigms like the flanker task, which require participants to inhibit an automatic response before making a decision. Connectionist modeling work suggests that between-trial changes in attention result from fluctuations in conflict-as conflict occurs, attention needs to be upregulated to resolve it. Current sequential sampling models (SSMs) of within-trial effects, however, suggest that attention focuses on a goal-relevant target as a function of time. We propose that within-trial changes in cognitive control and attention are emergent properties of the dynamics of the decision itself. We tested our hypothesis by developing a set of SSMs, each making alternative assumptions about attention modulation and evidence accumulation mechanisms. Combining the SSM framework with likelihood-free Bayesian approximation methods allowed us to conduct quantified comparisons between subject-level fits. Models included either time- or control-based attention mechanisms, and either strongly- (via feedforward inhibition) or weakly correlated (via leak and lateral inhibition) evidence accumulation mechanisms. We fit all models to behavioral data collected in variants of the flanker task, one accompanied by EEG measures. Across three experiments, we found converging evidence that control-based attention processes in combination with evidence accumulation mechanisms governed by leak and lateral inhibition provided the best fits to behavioral data, and uniquely mapped onto observed decision-related signals in the brain. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom