
Cholinergic mechanisms of the context preexposure facilitation effect in adolescent rats.
Author(s) -
Patrese A. Robinson-Drummer,
Lisa B. Dokovna,
Nicholas A. Heroux,
Mark E. Stanton
Publication year - 2016
Publication title -
behavioral neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.918
H-Index - 140
eISSN - 1939-0084
pISSN - 0735-7044
DOI - 10.1037/bne0000134
Subject(s) - cholinergic , context (archaeology) , hippocampal formation , psychology , facilitation , antagonist , endocrinology , hippocampus , medicine , conditioning , muscarinic acetylcholine receptor , neuroscience , receptor , biology , paleontology , statistics , mathematics
The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which context learning, context-shock association, and expression of context conditioning occur in 3 separate phases-preexposure, training, and testing. During the preexposure phase, the CPFE is disrupted by hippocampal NMDA receptor blockade in juvenile rats (Schiffino et al., 2011), and a similar deficit is seen with a subcutaneous injection of the muscarinic receptor antagonist, scopolamine, in adult mice (Brown, Kennard, Sherer, Comalli, & Woodruff-Pak, 2011). As a foundation for further developmental research, the present study examined the role of cholinergic function in the CPFE in adolescent rats during each phase of the CPFE protocol. In Experiment 1, an i.p injection of either 0.5 or 1.0 mg/kg dose of scopolamine administered prior to all 3 phases of the CPFE protocol impaired the CPFE. Experiment 2 further showed that a 0.5 mg/kg injection prior to just 1 of the 3 phases of the CPFE also disrupted contextual fear conditioning. We further showed that the CPFE is impaired by localized scopolamine infusions into dorsal hippocampus on the preexposure day (Experiment 3a), training day (Experiment 3b), and test day (Experiment 3c). These findings demonstrate a role of cholinergic signaling in hippocampus during each of the 3 phases of the CPFE in adolescent rats. Implications for the development and neural basis of the CPFE are discussed. (PsycINFO Database Record