z-logo
Premium
Disturbed tooth eruption in osteopetrotic ( op/op ) mice: histopathogenesis of tooth malformation and odontomas
Author(s) -
IdaYonemochi Hiroko,
Noda Tadashi,
Shimokawa Hitoyata,
Saku Takashi
Publication year - 2002
Publication title -
journal of oral pathology and medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 83
eISSN - 1600-0714
pISSN - 0904-2512
DOI - 10.1034/j.1600-0714.2002.00087.x
Subject(s) - dental papilla , tenascin , cementum , odontoma , dental lamina , pulp (tooth) , enamel organ , anatomy , extracellular matrix , pathology , medicine , biology , dentin , dentistry , microbiology and biotechnology , odontoblast , enamel paint , ameloblast , fibronectin , odontogenic
Background:  Odontoma‐like structures are formed in the jaw bone of osteopetrotic ( op/op ) mice, which have a congenital deficiency in osteoclastic differentiation due to the absence of functional macrophage colony‐stimulating factor (M‐CSF). Methods:  To clarify the histopathogenesis of tooth malformation and odontoma‐like structures, a 2‐year postnatal process of development of the op/op mandibular incisor was examined radiologically and histologically. At the same time, extracellular matrix (ECM) remodeling around tooth germs was analyzed immunohistochemically. Results:  Abnormal forms of op/op tooth germ were noticeable even at 3 days after birth on a radiogram. Histologically, op/op mice were clearly distinguished by the disappearance of dental follicular space at 3 days. With aging, bone trabeculae, which were not remodeled, penetrated into op/op tooth germs and divided them into several daughter germs, which were recognized as odontomas. In mandibular incisor bodies, the immature ECM components, such as heparan sulfate proteoglycan and tenascin, were preserved diffusely in the dental papilla/pulp, which indicates that maturation of the stroma does not take place in op/op mandibular incisors. Conclusion:  The observation suggests that the disturbed morphogenesis of op/op tooth germs is functionally explained by the disordered immunolocalization of ECM molecules, and that the dental follicular space is essential for normal tooth development because it prevents bone penetration into the tooth germs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here