Premium
Induction of phlorotannin production in a brown alga: defense or resource dynamics?
Author(s) -
Jormalainen Veijo,
Honkanen Tuija,
Koivikko Riitta,
Eränen Janne
Publication year - 2003
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1034/j.1600-0706.2003.12635.x
Subject(s) - fucus vesiculosus , thallus , biology , fontinalis , botany , snail , algae , brown algae , grazing , nutrient , ecology , salvelinus , fishery , fish <actinopterygii> , trout
Increase of phenolic secondary metabolites, phlorotannins, in brown algae due to gastropod grazing has been interpreted as an anti‐herbivore adaptation. Here we tested whether such a response could be due to changes in truly available resources for the alga, not by the grazing activity of snails as such. We allowed two species of snails, Theodoxus fluviatilis and Physa fontinalis to graze on Fucus vesiculosus . These species feed on epibiota and particulate matter on the thallus but do not eat the thallus of F. vesiculosus . We further simulated snail grazing by nutrient enhancement, removal of epibiota and by a combination of the two. Manipulations of nutrient and light availability revealed the crucial role of epibiota in mediating resource availability for F. vesiculosus . Nutrient enhancement alone increased epibiota and decreased phlorotannins. Cleaning the thallus resulted in increased growth, and together with nutrient enhancement also in a trade‐off with phlorotannins. Presence of T. fluviatilis on the thallus induced phlorotannin production, a response differing from the simulations of snail grazing. However, we suggest that the increase in phlorotannins may not be an induced defense but rather a consequence of a specific way of resource manipulation by this snail species. T. fluviatilis removes hyaline hairs that facilitate nutrient uptake. P. fontinalis did not remove hyaline hairs and the response of the alga to its grazing was similar to the treatment where we mechanically removed epibiota suggesting that cleaning of the thallus is the major mechanism how this snail species affects F. vesiculosus . Genetic variation in phlorotannin concentrations highly exceeded the induced responses of simulated or real snail grazing. This casts doubt for the efficiency of induced phlorotannin production to act as a defense, but is not contradictory with the interpretation of phlorotannins responding to variation in resource availability.