Premium
Characterization of endotoxin and 3‐hydroxy fatty acid levels in air and settled dust from commercial aircraft cabins
Author(s) -
Hines C. J.,
Waters M. A.,
Larsson L.,
Petersen M. R.,
Saraf A.,
Milton D. K.
Publication year - 2003
Publication title -
indoor air
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.387
H-Index - 99
eISSN - 1600-0668
pISSN - 0905-6947
DOI - 10.1034/j.1600-0668.2003.00175.x
Subject(s) - library science , occupational safety and health , medicine , pathology , computer science
Endotoxin was measured in air and dust samples collected during four commercial aircraft flights. Samples were analyzed for endotoxin biological activity using the Limulus assay. 3-hydroxy fatty acids (3-OH FA) of carbon chain lengths C10:0-C18:0 were determined in dust by gas chromatography-ion trap tandem mass spectrometry. The geometric mean (geometric standard deviation) endotoxin air level was 1.5 EU/m3 (1.9, n = 28); however, significant differences were found by flight within aircraft type. Mean endotoxin levels were significantly higher in carpet dust than in seat dust (140 +/- 81 vs. 51 +/- 25 EU/mg dust, n = 32 each, P < 0.001). Airborne endotoxin levels were not significantly related to either carpet or seat dust endotoxin levels. Mean 3-OH FA levels were significantly higher in carpet dust than in seat dust for C10:2, C12:0, and C14:0 (P < 0.001 for each), while the mean level of C16:0 was significantly higher in seat dust than in carpet dust (P < 0.01). Carpet dust endotoxin was significantly, but moderately, correlated with 3-OH-C12:0 and 3-OH-C14:0 (Pearson r = 0.52 and 0.48, respectively), while correlation of seat dust endotoxin with individual 3-OH FAs depended on the test statistic used. Mean endotoxin potency was significantly higher for carpet dust than for seat dust (6.3 +/- 3.0 vs. 3.0 +/- 1.4 EU/pmol LPS, P < 0.0001). Mean endotoxin levels in the air and dust of commercial aircraft cabins were generally higher than mean levels reported in homes and office buildings. These results suggest that exposure route and dust source are important considerations when relating endotoxin exposure to specific health outcomes.