z-logo
Premium
An unsolved problem of the clonal selection theory and the model of an oligomeric B‐cell antigen receptor
Author(s) -
Michael Reth,
Jürgen Wienands,
Wolfgang W. A. Schamel
Publication year - 2000
Publication title -
immunological reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.839
H-Index - 223
eISSN - 1600-065X
pISSN - 0105-2896
DOI - 10.1034/j.1600-065x.2000.00610.x
Subject(s) - clonal selection , citation , selection (genetic algorithm) , biology , computer science , computational biology , genetics , immunology , artificial intelligence , library science
The B cell antigen receptor (BCR) plays a central role in the development, survival and activation of B lymphocytes. As the pre-BCR, it controls allelic exclusion of heavy chains and the expansion of pre-B cells. As the BCR, it controls the positive and negative selection of immature B cells as well as the survival and activation of mature B cells. Recent studies of receptors have shown that it is the ligand that brings them into the conformation necessary for signaling. How the multiple and structurally diverse antigens could fulfill this task for the BCR is unknown, and we regard this as an unsolved problem of Burnet's clonal selection theory This question and our recent biochemical studies lead us to propose a new model for the BCR, according to which the BCR exists as a precise oligomeric complex on the B cell surface. In this form, it can signal positive selection and survival of B cells. Binding to self- or foreign antigen results in a distortion of the oligomeric complex that gives the signal for negative selection of immature and activation of mature B cells.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here