z-logo
open-access-imgOpen Access
Patterns of commonness and rarity in central European birds: reliability of the core‐satellite hypothesis within a large scale
Author(s) -
Storch David,
Šizling Arnošt L.
Publication year - 2002
Publication title -
ecography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.973
H-Index - 128
eISSN - 1600-0587
pISSN - 0906-7590
DOI - 10.1034/j.1600-0587.2002.250403.x
Subject(s) - metapopulation , ecology , occupancy , habitat , rare species , abundance (ecology) , population , species distribution , common species , relative abundance distribution , bimodality , biology , biological dispersal , relative species abundance , physics , demography , quantum mechanics , sociology , galaxy
The frequency distribution of species’ area of occupancy is often bimodal, most species being either very rare or very common in terms of number of occupied sites. This pattern has been attributed to the nonlinearity associated with metapopulation dynamics of the species, but there are also other explanations comprising sampling artifact and frequency distribution of suitable habitats. We tested whether the bimodal frequency distribution of occupied squares in central European birds could be derived solely from the frequency distribution of species population sizes (i.e. the sampling artifact hypothesis) or from the spatial distribution of their preferred habitats. Both models predict high proportion of very common species, i.e. the right side of frequency distribution. Bimodality itself is well predicted by models based on random placement of individuals according to their abundances but neither model predicts the observed prevalence of rare species. Even the combined models that assume random placement of individuals within the squares with suitable habitat do not predict such a high proportion of rare species. The observed distribution is more aggregated, rare species occupying a smaller portion of suitable habitat than predicted on the basis of their abundance. The pattern is consistent with metapopulation processes involving local population extinctions. The involvement of these processes is supported by two further observations. First, species rarity is associated with significant population trend and/or location on the edge of their ranges within central Europe, both situations presumably associated with metapopulation processes. Second, suitable habitats seem to be either saturated or almost unoccupied, which is consistent with the predictions of the metapopulation model based on nonlinear dynamics of extinction and colonization. Although the habitat suitability is an important determinant of species distribution, the rarity of many species of birds within this scale of observation seems to be affected by other factors, including local population extinctions associated with fragmentation of species’ habitats.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here