Premium
Comparative analysis of collagen membranes for the treatment of implant dehiscence defects
Author(s) -
Oh TaeJu,
Meraw Stephen J.,
Lee EunJu,
Giannobile William V.,
Wang HomLay
Publication year - 2003
Publication title -
clinical oral implants research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.407
H-Index - 161
eISSN - 1600-0501
pISSN - 0905-7161
DOI - 10.1034/j.1600-0501.2003.140111.x
Subject(s) - dehiscence , implant , dentistry , medicine , dermis , barrier membrane , membrane , surgery , anatomy , chemistry , biochemistry
Guided bone regeneration (GBR) evolved from the concept of guided tissue regeneration (GTR) and has been used for reconstructing sites with bone deficiencies associated with dental implants. For GBR, the use of absorbable collagen membranes has been increasing, but, at present, scientific information on the use of collagen membranes for GBR is limited. This study was aimed to clinically and histomorphometrically compare two collagen membranes, Bio‐Gide ® and BioMend Extend TM , for the treatment of implant dehiscence defects in eight mongrel dogs. Implant dehiscence defects were surgically created in edentulous ridges, followed by the placement of three endosseous implants bilaterally in the mandible. Each implant dehiscence defect was randomly assigned to one of three treatment groups: (1) control (no membrane), (2) porcine dermis collagen barrier (Bio‐Gide) or (3) bovine tendon collagen barrier (BioMend Extend). Dogs were sacrificed at 4 and 16 weeks (four dogs each) after treatment. Histomorphometric analysis included percentage linear bone fill (LF), new bone‐to‐implant contact (BIC) and area of new bone fill (BF). The results of the study revealed no significant differences among groups for any parameter at 4 weeks. However, at 16 weeks, more LF, BIC, and BF were noted in the membrane‐treated groups than controls. BioMend Extend‐treated defects demonstrated significantly greater BIC than control ( P < 0.05) at this time point. BIC at 16 weeks was significantly greater than 4‐week BIC ( P < 0.05). Membrane exposure occurred in 9 out of 15 sites examined, resulting in significantly less LF and BIC than the sites without membrane exposure ( P < 0.05). The results of this study indicate that: (1) GBR treatment with collagen membranes may significantly enhance bone regeneration, manifested at late stage (16 weeks) of healing; and (2) space maintenance and membrane coverage were the two most important factors affecting GBR using bioabsorbable collagen membranes.