Premium
A study of cell models: 3. A pilot study on the calibration of manifold cell models in the time domain and in the Laplace domain
Author(s) -
Diskin M. H.,
Pegram G. G. S.
Publication year - 1987
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/wr023i004p00663
Subject(s) - laplace transform , robustness (evolution) , mathematics , computation , calibration , manifold (fluid mechanics) , cascade , convolution (computer science) , computer science , convergence (economics) , algorithm , mathematical optimization , mathematical analysis , artificial neural network , artificial intelligence , statistics , engineering , mechanical engineering , biochemistry , chemistry , chemical engineering , economics , gene , economic growth
The results of the calibration of a hydrologic system model depend, among other factors, on the formulation of the model structure and the procedure adopted for the computations. The variation between different methods is relatively small, but it is possible to gain some side benefits by using one method or another. The paper describes the results obtained with different formulations of two semi‐distributed cells models, a cascade model previously described in the technical literature, and a new manifold model. Two equivalent formulations were used for the definition of the models. One was based on the use of convolution integrals, and the second was based on a discretely coincident autoregressive moving average formulation. In addition, a rarely used approach based on Laplace transforms is also described. Results obtained by this method indicate that it has some merits, such as robustness and convergence, which make it an attractive calibration technique.