Premium
Subduction of young oceanic lithosphere and extensional orogeny in southwestern North America during Mid‐Tertiary time
Author(s) -
Elston Wolfgang E.
Publication year - 1984
Publication title -
tectonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.465
H-Index - 134
eISSN - 1944-9194
pISSN - 0278-7407
DOI - 10.1029/tc003i002p00229
Subject(s) - geology , orogeny , subduction , lithosphere , obduction , terrane , basement , island arc , metamorphism , convergent boundary , geochemistry , collision zone , oceanic crust , continental crust , paleontology , crust , tectonics , civil engineering , engineering
An “extensional orogeny” deformed the Basin and Range province, probably beginning in the late Eocene (about 40 ± 3 Ma). Its characteristics include partial melting of the continental lithosphere during the “ignimbrite flareup,” massive ductile extension (including detachment faulting), and rise of metamorphic core complexes. The affected zone became about 1200 km wide, possibly double its original width. It rose an average of 1–2 km, despite crustal thinning. Locally, some of the highest mountains of North America, up to 4.3 km high, rose through resurgence of ignimbrite cauldrons and isostatic uplift of underlying plutons. The climax of extension occurred prior to the development of the present basin and range topography. Modeling of major and trace elements and Sr and Pb isotopes strongly suggests that mid‐Tertiary volcanic magmas equilibrated, and probably originated, in the continental lithosphere. Components attributable to subducted oceanic lithosphere have not yet been identified. The rocks seem to belong to two provinces, separated by the quartz diorite boundary line of Moore (1959), which also marks the western limit of North America at the end of the late Paleozoic Sonoman orogeny. To the west, low‐K rocks rest on a basement of predominantly oceanic accreted terranes; to the east, high‐K rocks rest on an autochthonous sialic basement. Within the high‐K province, potassium variations can be correlated with crustal thickness; there is no need to invoke a K‐h relationship. Conventional models of plate convergence and back arc extension which involve subduction of old, rigid, cool, and dense oceanic lithosphere may not apply to the mid‐Tertiary Basin and Range province. The overridden Farallon plate is more likely to have been young, hot, ductile, buoyant, and no denser than continental asthenosphere, having been generated in a spreading center close to North America. Under these conditions, motion of the subducting plate slows and slab‐pull is likely to approach zero. Even prior to ridge‐trench collision, overridden oceanic lithosphere may have become underplated beneath the continental lithosphere and ruptured by rising mantle diapirs. Subducted oceanic lithosphere no longer acted as a heat sink, which could partly account for the great width of the affected zone and the anomalous thermal gradients required for partial melting, extension, and metamorphism. Had these processes not died down, after ridge‐trench collision, the western segment of the Cordillera might have separated from North America to form a Japanlike archipelago, while the Basin and Range province foundered into an analog to the Sea of Japan. Instead of rupturing completely, the Basin and Range province fractured into fault blocks.