Premium
Plasma convection in Neptune's magnetosphere
Author(s) -
Selesnick R. S.
Publication year - 1990
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/gl017i010p01681
Subject(s) - magnetosphere , physics , neptune , plasma , convection , planet , ionosphere , torus , cyclotron , magnetosphere of jupiter , magnetic field , particle acceleration , geophysics , computational physics , astrophysics , mechanics , nuclear physics , magnetopause , geometry , mathematics , quantum mechanics
The magnetosphere of Neptune changes its magnetic configuration continuously as the planet rotates, leading to a strong modulation of the convection electric field. Even though the corotation speed is considerably larger, the modulation causes the small convection speed to have a cumulative effect, much like the acceleration of particles in a cyclotron. A model calculation shows that plasma on one side of the planet convects out of the magnetosphere in a few planetary rotations, while on the other side it convects slowly planetward. The observation of nitrogen ions from a Triton plasma torus may provide a test of the model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom