Premium
Magnetospheric interaction with Triton's ionosphere
Author(s) -
Strobel Darrell F.,
Cheng Andrew F.,
Summers Michael E.,
Strickland Douglas J.
Publication year - 1990
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/gl017i010p01661
Subject(s) - physics , ionosphere , electron precipitation , electron , plasma , computational physics , atomic physics , solar wind , magnetosheath , earth's magnetic field , magnetosphere , magnetic field , geophysics , magnetopause , nuclear physics , quantum mechanics
The large electron densities measured by the Voyager radio occultation experiment are attributed to the precipitation of magnetospheric electrons with energy > 10 keV. Because the ionospheric electric Pedersen conductivity of Triton is,∼ (1−2) × 10 4 mho and the Alfven conductance is ∼ 3.5 mho, direct connective flow of plasma into the essentially infinitely conducting ionosphere is negligible. Magnetospheric electrons are transported to Triton's ionopause by curvature drift as a result of weak magnetic field line draping in a sub‐Alfvenic plasma interaction with Triton. At the ionopause energetic electrons have a high probability of elastic and inelastic scattering and precipitate into the upper atmosphere. The average power dissipation is estimated to be ∼ (2−3) × 10 8 W.